Respuesta :
Answer:
part (a) [tex]\alpha\ =\ -2.5\ rad/s^2[/tex]
part (b) N = 79.61 rev
part (c) [tex]\tau\ =\ 23.54\ Nm[/tex]
Explanation:
Given,
- Initial speed of the wheel = [tex]w_o\ =\ 50.0\ rad/s[/tex]
- total time taken = t = 20.0 sec
part (a)
Let [tex]\alpha[/tex] be the angular acceleration of the wheel.
Wheel is finally at the rest. Hence the final angular speed of the wheel is 0.
[tex]\therefore w_f\ =\ w_0\ +\ \alpha t\\\Rightarrow \alpha\ =\ -\dfrac{w_0}{t}\\\Rightarrow \alpha\ =\ -\dfrac{50}{20}\\\Rightarrow \alpha\ =\ -2.5\ rad/s^2[/tex]
part (b)
Let [tex]\theta[/tex] be the total angular displacement of the wheel from initial position till the rest.
[tex]\therefore \theta\ =\ w_0t\ +\ \dfrac{1}{2}\alphat^2\\\Rightarrow \theta\ =\ 50\times 20\ -\ 0.5\times 2.5\times 20^2\\\Rightarrow \theta\ =\ 500\ rad[/tex]
We know, 1 revolution = [tex]2\pi[/tex] rad
Let N be the number of revolution covered by the wheel.
[tex]\therefore N\ =\ \dfrac{\theta}{2\pi}\\\Rightarrow N\ =\ \dfrac{500}{2\times 3.14}\\\Rightarrow N\ =\ 79.61\ rev[/tex]
Hence the 79.61 revolution is covered by the wheel in the 20 sec.
part (c)
Given,
- Mass of the pole = m = 4 kg
- Length of the pole = L = 2.5 m
- Angle of the pole with the horizontal axis = [tex]\theta\ =\ 60^o[/tex]
Now the center of mass of the pole = [tex]d\ =\ \dfra{L}{2}\ =\ \dfrac{2.5}{2}\ =\ 1.25\ m[/tex]
Weight component of the pole perpendicular to the center of mass = [tex]F\ =\ mgcos\theta[/tex]
[tex]\therefore \tau\ =\ F\times d\\\Rightarrow \tau\ =\ 4\times 9.81\times cos60^o\times 1.25\\\Rightarrow \tau\ =\ 23.54\ Nm[/tex]