in exercises 9 to 12 all solutions to the equations

Answer:
The answer to your question are:
9.
a) 11 b) 31
10.
a) 1/5 b) do not exist
11.
a) √11 b) √8
12
a) ∛-3 b) ∛4
Step-by-step explanation:
9a
f(x) = x² - 5
f(4) = (4)² - 5 = 16 - 5 = 11
9b
f(-6) = (-6)² - 5 = 36 - 5 = 31
10 a
f(x ) = -1/x
f(-5 ) = -1/x = -1/-5 = 1/5
f(0 ) = -1/0 do not exist
11a
f(x) = √(x + 7)
f(4) = √(4 + 7)
f(x) = √11
b) f(1) = √(1 + 7)
f(1) = √8
12a
f(x) = ∛ (x - 1)
f(-2) = ∛ (-2 - 1)
f(-2) = ∛ -3
b)
f(3) = ∛ (3 - 1)
f(3) = ∛ 4
Answer:
12b. 28 = x
12a. -7 = x
11b. -6 = x
11a. 9 = x
10b. UNDEFINED
10a. -⅕ = x
9b. i = x
9a. ±3 = x
Step-by-step explanation:
12. Cube both sides of both equations, then solve for x:
[tex]12b. \: 3 = \sqrt[3]{x - 1} >> 27 = x - 1 \\ \\ 28 = x \\ \\ 12a. \: -2 = \sqrt[3]{x - 1} >> -8 = x - 1 \\ \\ -7 = x[/tex]
11. Square both sides of both equations, then solve for x:
[tex]11b. \: 1 = \sqrt{x + 7} >> 1 = x + 7 \\ \\ -6 = x \\ \\ 11a. \: 4 = \sqrt{x + 7} >> 16 = x + 7 \\ \\ 9 = x[/tex]
10. Dividing is the same as multiplying by the multiplicative inverse of another term:
[tex]10a. \: -5 = \frac{1}{x} >> -5 = {x}^{ -1} \\ \\ -\frac{1}{5} = x[/tex]
* ⁻¹ indicates the multiplicative inverse of -⅕, which is -5. Then there is 1⁄0, which is undefined.
9.
[tex]9b. \: -6 = {x}^{2} - 5[/tex]
+ 5 + 5
____________________
-1 = x²
[tex] i = x[/tex]
According to the Complex Number System, the iota symbol can be either complex or real:
[tex] \sqrt{-1} = i \\ -1 = {i}^{2} \\ -i = {i}^{3} \\ 1 = {i}^{4}[/tex]
I am joyous to assist you anytime.