Respuesta :

we can alsoways find the slope by simply using two points off the table, bearing in mind  that slope goes by different names

rate of change

average rate of change

delta difference

rise over run

however is the same cat disguised in different costumes.

[tex]\bf \begin{array}{|cc|ll} \cline{1-2} time&distance\\ \cline{1-2} 15&2\\ 30&4\\ 45&5\\ 60&6\\ \cline{1-2} \end{array} \begin{array}{llll} \\[1em] \leftarrow \\\\ \leftarrow \end{array}\qquad \qquad (\stackrel{x_1}{30}~,~\stackrel{y_1}{4})\qquad (\stackrel{x_2}{60}~,~\stackrel{y_2}{6})[/tex]

[tex]\bf \stackrel{\textit{\large average rate of change}}{\stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{6}-\stackrel{y1}{4}}}{\underset{run} {\underset{x_2}{60}-\underset{x_1}{30}}}\implies \cfrac{2}{30}\implies \cfrac{1}{15}}[/tex]