Respuesta :

Answer:

see explanation

Step-by-step explanation:

Using the rules of exponents

• [tex]a^{-m}[/tex] ⇔ [tex]\frac{1}{a^{m} }[/tex]

• [tex]a^{0}[/tex] = 1

• [tex]a^{m}[/tex] × [tex]a^{n}[/tex] ⇔ [tex]a^{(m+n)}[/tex]

Given

(a)

[tex]8^{-2}[/tex] = [tex]\frac{1}{8^{2} }[/tex]

(b)

[tex]\frac{1}{3^{-3} }[/tex] = 3³

(c)

[tex]6^{-12}[/tex] × [tex]6^{8}[/tex] × [tex]6^{0}[/tex]

= [tex]6^{(-12+8)}[/tex] × 1

= [tex]6^{-4}[/tex]

= [tex]\frac{1}{6^{4} }[/tex]

Answer:

a.  1 / 8^2    b. 3^3    c 1 / 6^4.

Step-by-step explanation:

We used the following rules   x^-n = 1/x^n,  

1 / x^-n = x^n

and  x^n * x^m = x^(n+m).