Answer: The mean is 556.4 ppm.
The standard deviation is 84.92 ppm.
Step-by-step explanation:
Let X denotes the concentration of carbon (ppm) .
Given :
X p(x)
350 0.08
440 0.11
560 0.48
640 0.33
The mean(expected value) is given by :-
[tex]E[x]=\sum x p(x)[/tex]
[tex]\Rightarrow\ E[x]=(350)(0.08)+(440)(0.11)+(560)(0.48)+(640)(0.33)=556.4[/tex]
Hence, the mean is 556.4 ppm.
Now, [tex]E[x^2]=\sum x^2 p(x)[/tex]
[tex]\Rightarrow\ E[x]=(350)^2(0.08)+(440)^2(0.11)+(560)^2(0.48)+(640)^2(0.33)=316792[/tex]
[tex]\text{Var(x)}=E[x^2]-[E[x]]^2\\\\=316792-556.4^2\\\\=316792-309580.96=7211.04[/tex]
Standard deviation: [tex]\sigma=\sqrt{7211.04}=84.9178426481\approx84.92[/tex]
Hence, The standard deviation is 84.92 ppm.