Health care issues are receiving much attention in both academic and political arenas. A sociologist recently conducted a survey of citizens over 60 years of age whose net worth is too high to qualify for Medicaid. The ages of 25 senior citizens were as follows: 60 61 62 63 64 65 66 68 68 69 70 73 73 74 75 76 76 81 81 82 86 87 89 90 92 Calculate the standard deviation of the ages of the senior citizens to 2 decimal places

Respuesta :

Answer:

Standard Deviation = 9.75        

Step-by-step explanation:

We are given the following data:

n = 25

Ages: 60, 61, 62, 63, 64, 65, 66, 68, 68, 69, 70, 73, 73, 74, 75, 76, 76, 81, 81, 82, 86, 87, 89, 90, 92

Formula:

For sample,

[tex]\text{Standard Deviation} = \sqrt{\displaystyle\frac{\sum (x_i -\bar{x})^2}{n-1}}[/tex]

where [tex]x_i[/tex] are data points, [tex]\bar{x}[/tex] is the mean and n is the number of observations.

[tex]Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}[/tex]

Mean = [tex]\frac{1851}{25} = 74.04[/tex]

Sum of square of differences = 2278.96

S.D = [tex]\sqrt{\diplaystyle\frac{2278.96}{24} } = 9.74[/tex]