Respuesta :
Answer:
Correct option is (C).
Step-by-step explanation:
[tex]f(x) = 8 {x}^{2} - 2x + 3[/tex]
[tex]g(x) = 12 {x}^{2} + 4x - 3[/tex]
Now,
h (x) =f (x) - g (x)
[tex]h(x) = \: 8 {x}^{2} - 2x + 3 - 12 {x}^{2} - 4x + 3[/tex]
[tex]h(x) = - 4 {x}^{2} - 6x + 6[/tex]
So, correct option is (C).
#$# HOPE YOU UNDERSTAND #$#
#$¥ THANK YOU ¥$#
❤ ☺ ☺ ☺ ☺ ☺ ☺ ❤
Answer: [tex]\text{h(x)}=-4x^2-6x+6[/tex]
Step-by-step explanation:
Given functions : [tex]\text{f(x) }= 8x^2 - 2x + 3[/tex] (1)
[tex]\text{g(x)} = 12x^2 + 4x - 3[/tex] (2)
To find : [tex]\text{ h(x) = f(x) - g(x)}[/tex]
Consider : [tex]\text{ h(x) = f(x) - g(x)}[/tex]
i.e. Subtract the expression for g(x) in equation (2) from the expression for f(x) in (1), we get
[tex]\text{ h(x)}=8x^2 - 2x + 3-(12x^2 + 4x -3)[/tex]
Multiply (-) sign inside the parentheses, we get
[tex]\text{ h(x) }=8x^2 - 2x + 3-12x^2 -4x +3[/tex]
Combine like terms, we get
[tex]\text{ h(x) }=8x^2-12x^2 - 2x -4x + 3 +3\\\\\Rightarrow\text{h(x)}=-4x^2-6x+6[/tex]
Hence, the correct answer is [tex]\text{h(x)}=-4x^2-6x+6[/tex]