f(x) = 8x2 – 2x + 3
g(x) = 12x2 + 4x – 3

What is h(x) = f(x) – g(x)?

Options:
h(x) = 20x2 + 2x
h(x) = –4x2 – 6x
h(x) = –4x2 – 6x + 6
h(x) = –4x2 + 2x

Respuesta :

Answer:

Correct option is (C).

Step-by-step explanation:

[tex]f(x) = 8 {x}^{2} - 2x + 3[/tex]

[tex]g(x) = 12 {x}^{2} + 4x - 3[/tex]

Now,

h (x) =f (x) - g (x)

[tex]h(x) = \: 8 {x}^{2} - 2x + 3 - 12 {x}^{2} - 4x + 3[/tex]

[tex]h(x) = - 4 {x}^{2} - 6x + 6[/tex]

So, correct option is (C).

#$# HOPE YOU UNDERSTAND #$#

#$¥ THANK YOU ¥$#

❤ ☺ ☺ ☺ ☺ ☺ ☺ ❤

Answer: [tex]\text{h(x)}=-4x^2-6x+6[/tex]

Step-by-step explanation:

Given functions : [tex]\text{f(x) }= 8x^2 - 2x + 3[/tex]  (1)

[tex]\text{g(x)} = 12x^2 + 4x - 3[/tex]   (2)

To find :  [tex]\text{ h(x) = f(x) - g(x)}[/tex]

Consider : [tex]\text{ h(x) = f(x) - g(x)}[/tex]

i.e. Subtract the expression for g(x) in equation (2) from the expression for f(x) in (1), we get

[tex]\text{ h(x)}=8x^2 - 2x + 3-(12x^2 + 4x -3)[/tex]

Multiply (-) sign inside the parentheses, we get

[tex]\text{ h(x) }=8x^2 - 2x + 3-12x^2 -4x +3[/tex]

Combine like terms, we get

[tex]\text{ h(x) }=8x^2-12x^2 - 2x -4x + 3 +3\\\\\Rightarrow\text{h(x)}=-4x^2-6x+6[/tex]

Hence, the correct answer is [tex]\text{h(x)}=-4x^2-6x+6[/tex]