Answer:
[tex]V_{toy}=85mL[/tex]
ρ=[tex]404.706kg/m^3[/tex]
Explanation:
We know that density is equal to the mass divided of its volume
ρ[tex]=\frac{m}{V}[/tex]
According to the Archimedes Principle the volume of displaced fluid is equivalent to the volume of the immersed object.
[tex]E=mg[/tex]
E=ρ[tex]*V_{immersed}*g[/tex]
[tex]V_{immersed}=61.3mL-26.9mL=34.4mL=3.44x10^{-5}m^3[/tex]
[tex]E=(1000kg/m^3)(3.44x10^{-5} m^3)(9.81m/s^2)=0.3374N[/tex]
[tex]E=W_{object}=m*g[/tex]
[tex]m_{object}=\frac{E}{g}=\frac{0.3374N}{9.81m/s^2}=0.0344kg[/tex]
[tex]V_{object}=(7.23cm)(5.20cm)(2.25cm)=85cm^3=85mL=8.5x10^{-5}m^3[/tex]
Now, we can calculate the density of the irregularly shaped object:
ρ=[tex]\frac{m}{V}=\frac{0.0344kg}{8.5x10^{-5} m^3} =404.706kg/m^3[/tex]