Answer: 666.13 units
Explanation:
Given that,
Production Per day (P) = 295
Usage rate of sub-components (D) = 12,700 per year (250 working days)
Holding cost (H) = $2 per item
Ordering costs (S) = $29 per order
[tex]d = \frac{D}{250}[/tex]
[tex]d = \frac{12,700}{250}[/tex]
= $50.8
[tex][1-\frac{d}{P}]=[1-\frac{50.8}{295}][/tex]
= 1 - 0.1722
= 0.8278
= 0.83
[tex]Economic\ production\ Quantity=\sqrt{\frac{2\times D\times S}{H\times[1-\frac{d}{P}] }}[/tex]
[tex]Economic\ production\ Quantity=\sqrt{\frac{2\times 12,700\times 29}{2\times 0.83 }}[/tex]
[tex]=\sqrt{443,734.94}[/tex]
= 666.13 units