contestada


f(x) = 4x + 4 g(x) = 3x +7
1) find (f+g)(x)
2) find (f-g) (x)
3) find (f/g) (x)
4) what the domain for the answer in question 3. Use set builder notation or interval notation
5) find (f o g) (x)

Respuesta :

Answer:

Part 1) [tex](f+g)(x)=7x+11[/tex]

Part 2) [tex](f-g)(x)=x-3[/tex]

Part 3) [tex](f/g)(x)=\frac{(4x+4)}{(3x+7)}[/tex]

Part 4) In interval notation the domain is  (-∞,-7/3) ∪ (-7/3,∞)

Part 5) [tex](f o g) (x)=12x+32[/tex]

Step-by-step explanation:

we have

[tex]f(x)=4x+4[/tex]

[tex]g(x)=3x+7[/tex]

Part 1) Find (f+g)(x)

we know that

[tex](f+g)(x)=f(x)+g(x)[/tex]

substitute the given functions

[tex](f+g)(x)=(4x+4)+(3x+7)[/tex]

Combine like terms

[tex](f+g)(x)=7x+11[/tex]

Part 2) Find (f-g)(x)

we know that

[tex](f-g)(x)=f(x)-g(x)[/tex]

substitute the given functions

[tex](f-g)(x)=(4x+4)-(3x+7)[/tex]

[tex](f-g)(x)=4x+4-3x-7[/tex]

Combine like terms

[tex](f-g)(x)=x-3[/tex]

Part 3) Find (f/g)(x)

we know that

[tex](f/g)(x)=\frac{f(x)}{g(x)}[/tex]

substitute the given functions

[tex](f/g)(x)=\frac{(4x+4)}{(3x+7)}[/tex]

Part 4) What the domain for the answer in question 3

we have

[tex](f/g)(x)=\frac{(4x+4)}{(3x+7)}[/tex]

we know that

The denominator of the quotient cannot be equal to zero

so

[tex]3x+7=0[/tex]

[tex]3x=-7[/tex]

[tex]x=-\frac{7}{3}[/tex]

The domain is all real numbers except the number x=-7/3

In interval notation the domain is  (-∞,-7/3) ∪ (-7/3,∞)

Part 5) Find (f o g) (x)

we know that

[tex](f o g) (x)=f(g(x))[/tex]

substitute

[tex]f(g(x))=4(3x+7)+4[/tex]

[tex]f(g(x))=12x+28+4[/tex]

[tex]f(g(x))=12x+32[/tex]

therefore

[tex](f o g) (x)=12x+32[/tex]