Find d 2 y over d x squared for the curve given by x = 2t + 5 and y equals 3 times t over 2 . (4 points) 3 over the quantity 4 times t plus 10 the quantity 4 times t plus 10 over 3 1 0

Respuesta :

Answer:

[tex]\dfrac{d^2y}{dx^2}=0[/tex]

D is correct.

Step-by-step explanation:

Given: [tex]x(t)=2t+5[/tex]

[tex]y(t)=\dfrac{3t}{2}[/tex]

To find: [tex]\dfrac{d^2y}{dx^2}[/tex]

As we know,

[tex]\dfrac{dy}{dx}=\dfrac{\frac{dy}{dt}}{\frac{dx}{dt}}[/tex]

This is parametric equation. Differentiate both function separately and substitute into formula.

[tex]x(t)=2t+5[/tex]   and   [tex]y(t)=\dfrac{3t}{2}[/tex]

[tex]\dfrac{dx}{dt}=2,\dfrac{y}{dt}=\dfrac{3}{2}[/tex]

Substitute into derivative

[tex]\dfrac{dy}{dx}=\dfrac{3}{2\cdot 2}=\dfrac{3}{4}[/tex]

For double derivative differentiate w.r.t x

[tex]\dfrac{d^2y}{dx^2}=0[/tex]

Hence, The value of [tex]\dfrac{d^2y}{dx^2}=0[/tex]