Find the solution of the following equation whose argument is strictly between 270^\circ270 ∘ 270, degree and 360^\circ360 ∘ 360, degree. Round your answer to the nearest thousandth. z^4=-625z 4 =−625

Respuesta :

[tex]\rightarrow z^4=-625\\\\\rightarrow z=(-625+0i)^{\frac{1}{4}}\\\\\rightarrow x+iy=(-625+0i)^{\frac{1}{4}}\\\\ x=r \cos A\\\\y=r \sin A\\\\r \cos A=-625\\\\ r \sin A=0\\\\x^2+y^2=625^{2}\\\\r^2=625^{2}\\\\|r|=625\\\\ \tan A=\frac{0}{-625}\\\\ \tan A=0\\\\ A=\pi\\\\\rightarrow z= [625(\cos (2k \pi+pi) +i \sin (2k\pi+ \pi)]^{\frac{1}{4}}\\\\k=0,1,2,3,4,....\\\\\rightarrow z=(625)^{\frac{1}{4}}[\cos \frac{(2k \pi+pi)}{4} +i \sin \frac{(2k\pi+ \pi)}{4}] [/tex]

[tex]\rightarrow z_{0}=(625)^{\frac{1}{4}}[\cos \frac{pi}{4} +i \sin \frac{\pi)}{4}]\\\\\rightarrow z_{1}=(625)^{\frac{1}{4}}[\cos \frac{3\pi}{4} +i \sin \frac{3\pi}{4}]\\\\ \rightarrow z_{2}=(625)^{\frac{1}{4}}[\cos \frac{5\pi}{4} +i \sin \frac{5\pi}{4}]\\\\ \rightarrow z_{3}=(625)^{\frac{1}{4}}[\cos \frac{7\pi}{4} +i \sin \frac{7\pi}{4}][/tex]

Argument of Complex number

Z=x+iy , is given by

If, x>0, y>0, Angle lies in first Quadrant.

If, x<0, y>0, Angle lies in Second Quadrant.

If, x<0, y<0, Angle lies in third Quadrant.

If, x>0, y<0, Angle lies in fourth Quadrant.

We have to find those roots among four roots whose argument is between 270° and 360°.So, that root is

   [tex] \rightarrow z_{2}=(625)^{\frac{1}{4}}[\cos \frac{5\pi}{4} +i \sin \frac{5\pi}{4}][/tex]