Answer:
Part a)
[tex]v = 21.9 m/s[/tex]
Part b)
[tex]y = 4.17 m[/tex]
So he will not able to block the goal
Part c)
[tex]y = 0.98 m[/tex]
yes he can stop the goal
Explanation:
As we know by the equation of trajectory of the ball
[tex]y = x tan\theta - \frac{gx^2}{2v^2cos^2\theta}[/tex]
[tex]y = 3 m[/tex]
[tex]x = 45.7 m[/tex]
[tex]\theta = 45 degree[/tex]
now from above equation we have
[tex]y = 45.7 tan 45 - \frac{9.81(45.7)^2}{2v^2cos^245}[/tex]
[tex]3 = 45.7 - \frac{20488}{v^2}[/tex]
[tex]v^2 = 479.81[/tex]
[tex]v = 21.9 m/s[/tex]
Part b)
If lineman is 4.6 m from the football
[tex]y = x tan\theta - \frac{gx^2}{2v^2cos^2\theta}[/tex]
[tex]y = 4.6tan45 - \frac{9.81(4.6^2)}{2(21.9^2)cos^245}[/tex]
[tex]y = 4.17 m[/tex]
So he will not able to block the goal
Part c)
If lineman is 1 m from the football
[tex]y = x tan\theta - \frac{gx^2}{2v^2cos^2\theta}[/tex]
[tex]y = 1tan45 - \frac{9.81(1^2)}{2(21.9^2)cos^245}[/tex]
[tex]y = 0.98 m[/tex]
yes he can stop the goal