Answer: 0.9545
Step-by-step explanation:
Given : Population mean : [tex]x'=400\ N[/tex]
Standard deviation : [tex]\sigma=25\ N[/tex]
Sample size : n=25
Test statistic : [tex]z=\dfrac{\overline{x}-x'}{\dfrac{\sigma}{\sqrt{n}}}[/tex]
For [tex]\overline{x}= 390[/tex], we have
[tex]z=\dfrac{390-400}{\dfrac{25}{\sqrt{25}}}=-2[/tex]
For [tex]\overline{x}= 410[/tex], we have
[tex]z=\dfrac{410-400}{\dfrac{25}{\sqrt{25}}}=2[/tex]
Now, by using the standard normal distribution table for z , we have
[tex]\text{P-value=}P(-2<z<-2)=1-2(P\geq2)\\\\=1-2(1-P(z<2))\\\\=1-2(1-0.9772498)=0.9544996\approx0.9545[/tex]
Hence, probability that this sampling will have a mean value between 390 and 410 = 0.9545