Respuesta :

Answer with explanation:

The given function : [tex]f(x)=x^2+2x-3[/tex]

Using completing the squares, we have

[tex]f(x)=x^2+2x+1-1-3[/tex]        [∵ [tex](x+1)^2=x^2+2x+1[/tex]]

[tex]f(x)=(x+1)^2-4[/tex]      (1)

Comparing (1) to the standard vertex form [tex]f(x)=(x-h)^2+k[/tex] , the vertex of function is at (h,k)=(-1,-4)

For x-intercept, put f(x)=0 in (1), we get

[tex]0=(x+1)^2-4\\\\\Rightarrow\ (x+1)^2=4[/tex]    

Square root on both sides, we get

[tex]x+1=\pm2\\\\x+1=-2\ or\ \ x+1=2\\\\=x=-3\ \ or\ x=1[/tex]

∴ x intercepts : x= (-3,0) and (1,0)

For y-intercept put x=0 in (1), we get

[tex]f(1)=(1)^2-4=1-4=-3[/tex]  

∴ y intercept : (0,-3)

Axis of symmetry : [tex]\dfrac{-b}{2a}[/tex]

In [tex]f(x)=x^2+2x-3[/tex] , a=1 and b=2

Axis of symmetry=[tex]\dfrac{-2}{2(1)}=-1[/tex]

Ver imagen JeanaShupp