Answer:
19.5
Step-by-step explanation:
The area of a triangle given 3 coordinates can be solved using the formula:
[tex]Area=|\frac{A_x(B_y-C_y)+B_x(C_y-A_y)+C_x(A_y-B_y)}{2}|[/tex]
Where
A_x is x coordinate of first point (here 7)
A_y is y coordinate of first point (here 1)
B_x is x coordinate of 2nd point (here 0)
B_y is y coordinate of 2nd point (here 10)
C_x is x coordinate of 3rd point (here 9)
C_y is y coordinate of 3rd point (here 4)
Plugging these into the formula, we get out answer:
[tex]Area=|\frac{A_x(B_y-C_y)+B_x(C_y-A_y)+C_x(A_y-B_y)}{2}|\\Area=|\frac{7(10-4)+0(4-1)+9(1-10)}{2}|\\Area = |\frac{7(6)+0+9(-9)}{2}|\\Area=|-19.5|\\Area = 19.5[/tex]
Hence, the area is 19.5