Respuesta :
Answer:
The answer to your question is: m∠CAT = 45; m∠TAD = 135
Step-by-step explanation:
Data
∠CAT and ∠TAD are a linear pair
m∠CAT = 2x-5
m∠TAD = 5x+10
m∠CAT = ?
m∠TAD = ?
Process
The sum of linear pairs angles equals 180°, so
m∠CAT + m ∠TAD = 180°
(2x - 5) + (5x + 10) = 180°
2x - 5 + 5x + 10 = 180
Solve for x 7x + 5 = 180
7x = 180 - 5
7x = 175
x = 175 / 7
x = 25
m∠CAT = 2(25) - 5 = 50 -5 = 45
m∠TAD = 5(25) + 10 = 125 + 10 = 135
Answer:
[tex]m\angle CAT=45^{\circ}[/tex]
[tex]m\angle TAD=135^{\circ}[/tex]
Step-by-step explanation:
We are given that angle CAT and angle TAD are a linear pair.
[tex]m\angle CAT=2x-5[/tex]
[tex]m\angle TAD=5x+10[/tex]
We have to find the measure of angle CAT and angle TAD.
[tex]m\angle CAT+m\angle TAD=180^{\circ}[/tex] (linear pair sum =180 degrees)
[tex]2x-5+5x+10=180[/tex]
[tex]7x+5=180[/tex]
[tex]7x=180-5=175[/tex]
[tex]x=\frac{175}{7}=25[/tex]
Substitute the values then we get
[tex]m\angle CAT=2(25)-5=45^{\circ}[/tex]
[tex]m\angle TAD=5(25)+10=125+10=135^{\circ}[/tex]
