Calculate the pH of a water at 25°C that contains 0.6580 mg/L carbonic acid. Assume that [H+ ]=[HCO3 − ] at equilibrium and neglect the dissociation of water.

Respuesta :

Answer:

The pH of a water at 25°C that contains 0.6580 mg/L carbonic acid is 5.7.

Explanation:

First, the molar mass of carbonic acid is 62g/mol, thus

[tex]6.58x10^{-4}\frac{g}{L} /62\frac{g}{mol}  = 1.06x10^{-5}\frac{mol}{L}[/tex]

The solution has a concentration of 1.06x10-5 mol/L.

Second, the acid-base balance is araised, with the initial and the equilibrium concentrations

       H2CO3        +      H2O    ⇄      HCO3−     +      H3O+

i)      1.06x10-5                                        -                     -

eq)   1.06x10-5 - x                                 x                     x

Knowing the Ka of carbonic acid (4.3x10-7) the expression of the equilibrium constant is written

[tex]K_{a} = 4.3x10^{-7}  = \frac{x^{2}}{1.06x10^{-5}-x }[/tex]

Clearing the x, and solving the quadratic equation

[tex]4.3x10^{-7}.[1.06x10^{-5}-x]   = x^{2}\\4.6x10^{-12} - 4.3x10^{-7}x - x^{2} = 0\\x1 = 1.9x10^{-6} \\x2=-2.4x10^{-6}[/tex]

Only the positive value is correct, so [H+ ]=[HCO3 − ] = 1.9x10-6

Since, pH = - Log [H+ ]

[tex]pH = - Log [H^{+} ] = -Log (1.9x10^{-6}) = 5.7[/tex]