Answer:
Re=2094,76
Explanation:
For a fluid that circulates inside a straight circular pipe, the Reynolds number is given by:
[tex]Re=\frac{pvD}{u}[/tex]
where (using the international measurement system):
To solve the probelm, we just need to replace our data using THE CORRECT UNITS in the Reynolds number equation. So we have:
ρ=1051 kg/m3,
v=34,3 cm/s=0,343 m/s
D=2,15 cm = 0,0215 m
μ = 3,7 cp * 10^-3 Pa.s/1 cp = 3,7*10^-3 Pa.s
Replacing in the main equation:
[tex]Re=\frac{1051\frac{kg}{m^{3} }*0,343\frac{m}{s}*0,0215m }{3,7*10^{-3}Pa.s } =2094,76[/tex]
So the Reynolds number is 2094,76 (note that the Reynolds number is a dimensionless quantity).