The gravitational force between Pluto and Charon is 3.61 × 1018 N. Pluto has a mass of 1.3 × 1022 kg, which is only slightly greater than Charon’s mass of 1.6 × 1021 kg. How far apart are Pluto and Charon? 2.0 × 107 m 2.4 × 1012 m 3.8 × 1014 m 5.8 × 1024 m

Respuesta :

Answer:

The distance between Pluto and Charon is  [tex]1.96 \times 10^7  m[/tex]

Explanation:

Force of gravitation between two objects [tex]F_g= \frac{G(M_1 M_2 )}{r^2}[/tex]  

Where [tex]M_1  \ and \ M_2[/tex]  are the masses of the objects,r is the distance between the objects

G is the universal gravitational constant=[tex]6.67 \times 10^-^1^1 m^3/kg s^2[/tex]

Here mass of pluto = [tex]1.3 \times 10^2^2  kg[/tex]

mass of charon = [tex]1.6 \times 10^2^1 kg[/tex]

Force of gravitation [tex]F_g=3.61 \times 10^1^8  N[/tex]

[tex]F_g= \frac {G(M_1 M_2 )}{r^2}[/tex]

[tex]r^2= \frac {G(M_1 M_2 )}{F_g }[/tex]

[tex]r= \sqrt \frac{(G(M_1 M_2 )}{F_g}[/tex]

[tex]=\sqrt \frac {((6.674\times 10^-^1^1) \times 1.3 \times 10^2^2 \times 1.6\times 10^2^1)}{(3.61 \times 10^1^8 )}[/tex]

=[tex]\sqrt \frac {(13.88*10^32)}{(3.61*10^18)}[/tex]

=[tex]1.96 \times10^7  m[/tex]

Answer:

The answer is A on edgen.

Explanation:

A. 2.0 × 10^7 m