Respuesta :

Answer:

[tex]x=-4 \pm 2\sqrt{3}[/tex]

Step-by-step explanation:

The zeros of f is when f=0.

So we need to solve:

[tex]x^2+8x+4=0[/tex]

-----------------------------------------------------------------------------------------------------

I'm going to choose completing the square.

Subtract 4 on both sides:

[tex]x^2+8x=-4[/tex]

Add (8/2)^2 on both sides:

[tex]x^2+8x+(\frac{8}{2})^2=-4+(\frac{8}{2})^2[/tex]

Write left hand side as a square:

[tex](x+\frac{8}{2})^2=-4+4^2[/tex]

[tex](x+4)^2=-4+16[/tex]

[tex](x+4)^2=12[/tex]

Take the square root of both sides:

[tex](x+4)=\pm \sqrt{12}[/tex]

[tex]x+4=\pm \sqrt{12}[/tex]

Simplify right hand side:

[tex]x+4=\pm \sqrt{4}\sqrt{3}[/tex]

[tex]x+4=\pm 2\sqrt{3}[/tex]

Subtract 4 on both sides:

[tex]x=-4 \pm 2\sqrt{3}[/tex]

---------------------------------------------------------------------------------------------

You could also go with quadratic formula:

[tex]a=1[/tex]

[tex]b=8[/tex]

[tex]c=4[/tex]

We need to use this formula:

[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex].

I'm going to evaluate [tex]b^2-4ac[/tex] first.

[tex]b^2-4ac=(8)^2-4(1)(4)=64-16=48[/tex]

So now we have this so for with the formula:

[tex]x=\frac{-8 \pm \sqrt{48}}{2(1)}[/tex]

Simplifying the denominator gives:

[tex]x=\frac{-8 \pm \sqrt{48}}{2}[/tex]

Now is there a perfect square in 48?  Yes, 16 is a perfect square factor in 48.

So we can write:

[tex]x=\frac{-8 \pm \sqrt{16}\sqrt{3}}{2}[/tex]

[tex]x=\frac{-8 \pm 4\sqrt{3}}{2}[/tex]

[tex]x=\frac{-8}{2}\pm \frac{4\sqrt{3}}{2}[/tex]

Reduce fractions:

[tex]x=-4 \pm 2\sqrt{3}[/tex]