1. Rank the following in terms of increasing density:
A. A100 g object with a volume of 25 cubic centimeters
B. A 200 g object with a volume of 100 cubic centimeters
C. A 100 g object with a volume of 100 cubic centimeters
D. A 400 g object with a volume of 50 cubic centimeters

Respuesta :

Answer:

C < B < A < D

Explanation:

Density is defined as the quotient of Mass divided by Volume, therefore we need to find that quotient for each case in order to rank them:

Case A: [tex]D = \frac{100}{25} = 4 \frac{g}{cm^3}[/tex]

Case B: [tex]D = \frac{200}{100} = 2 \frac{g}{cm^3}[/tex]

Case C: [tex]D = \frac{100}{100} = 1 \frac{g}{cm^3}[/tex]

Case D: [tex]D = \frac{400}{50} = 8 \frac{g}{cm^3}[/tex]

So the ranking in INCREASING density is:

C < B < A < D

Answer:

The density of the objects in increasing order is given as C B A D.

Explanation:

Density is the property of mater which compares amount of mater of an object and volume of an object.

The density is given by the formula:

[tex]\rho=\frac{m}{V}[/tex]

Where,

‘ρ’ is density

‘m’ is mass of an object

‘V’ is volume of an object

Object A:

Take object A of 100 g object with a volume of 25 cubic centimetres:

We know that, [tex]m_{A}=100 \ \mathrm{g}[/tex] and [tex]V_{A}=25 \ \mathrm{cm}^{3}[/tex]

Density of A is:

[tex]\Rightarrow \rho_{A}=\frac{m_{A}}{V_{A}}[/tex]

[tex]\Rightarrow \rho_{A}=\frac{100}{25}[/tex]

[tex]\therefore \rho_{A}=4 \ g / \mathrm{cm}^{3}[/tex]

Object B:

Take object A 200 g object with a volume of 100 cubic centimetres:

We know that, [tex]m_{B}=200 \ \mathrm{g}[/tex] and [tex]V_{B}=100 \ \mathrm{cm}^{3}[/tex]

Density of B is:

[tex]\Rightarrow \rho_{B}=\frac{m_{B}}{V_{B}}[/tex]

[tex]\Rightarrow \rho_{B}=\frac{200}{100}[/tex]

[tex]\therefore \rho_{B}=2 \ g / \mathrm{cm}^{3}[/tex]

Object C:

Take object A 100 g object with a volume of 100 cubic centimetres:

We know that, [tex]m_{C}=100 \ \mathrm{g}[/tex] and [tex]V_{C}=100 \ \mathrm{cm}^{3}[/tex]

Density of C is:

[tex]\Rightarrow \rho_{C}=\frac{m_{C}}{V_{C}}[/tex]

[tex]\Rightarrow \rho_{C}=\frac{100}{100}[/tex]

[tex]\therefore \rho_{C}=1 \ \mathrm{g} / \mathrm{cm}^{3}[/tex]

Object D:

Take object A 400 g object with a volume of 50 cubic centimetres:

We know that, [tex]m_{D}=400 \ \mathrm{g}[/tex] and [tex]V_{D}=50 \ \mathrm{cm}^{3}[/tex]

Density of object D is:

[tex]\Rightarrow \rho_{D}=\frac{m_{D}}{V_{D}}[/tex]

[tex]\Rightarrow \rho_{D}=\frac{400}{50}[/tex]

[tex]\therefore \rho_{D}=8 \ \mathrm{g} / \mathrm{cm}^{3}[/tex]

From the above calculation, on comparing,

[tex]C<B<A<D[/tex]