Respuesta :
Answer:
C < B < A < D
Explanation:
Density is defined as the quotient of Mass divided by Volume, therefore we need to find that quotient for each case in order to rank them:
Case A: [tex]D = \frac{100}{25} = 4 \frac{g}{cm^3}[/tex]
Case B: [tex]D = \frac{200}{100} = 2 \frac{g}{cm^3}[/tex]
Case C: [tex]D = \frac{100}{100} = 1 \frac{g}{cm^3}[/tex]
Case D: [tex]D = \frac{400}{50} = 8 \frac{g}{cm^3}[/tex]
So the ranking in INCREASING density is:
C < B < A < D
Answer:
The density of the objects in increasing order is given as C B A D.
Explanation:
Density is the property of mater which compares amount of mater of an object and volume of an object.
The density is given by the formula:
[tex]\rho=\frac{m}{V}[/tex]
Where,
‘ρ’ is density
‘m’ is mass of an object
‘V’ is volume of an object
Object A:
Take object A of 100 g object with a volume of 25 cubic centimetres:
We know that, [tex]m_{A}=100 \ \mathrm{g}[/tex] and [tex]V_{A}=25 \ \mathrm{cm}^{3}[/tex]
Density of A is:
[tex]\Rightarrow \rho_{A}=\frac{m_{A}}{V_{A}}[/tex]
[tex]\Rightarrow \rho_{A}=\frac{100}{25}[/tex]
[tex]\therefore \rho_{A}=4 \ g / \mathrm{cm}^{3}[/tex]
Object B:
Take object A 200 g object with a volume of 100 cubic centimetres:
We know that, [tex]m_{B}=200 \ \mathrm{g}[/tex] and [tex]V_{B}=100 \ \mathrm{cm}^{3}[/tex]
Density of B is:
[tex]\Rightarrow \rho_{B}=\frac{m_{B}}{V_{B}}[/tex]
[tex]\Rightarrow \rho_{B}=\frac{200}{100}[/tex]
[tex]\therefore \rho_{B}=2 \ g / \mathrm{cm}^{3}[/tex]
Object C:
Take object A 100 g object with a volume of 100 cubic centimetres:
We know that, [tex]m_{C}=100 \ \mathrm{g}[/tex] and [tex]V_{C}=100 \ \mathrm{cm}^{3}[/tex]
Density of C is:
[tex]\Rightarrow \rho_{C}=\frac{m_{C}}{V_{C}}[/tex]
[tex]\Rightarrow \rho_{C}=\frac{100}{100}[/tex]
[tex]\therefore \rho_{C}=1 \ \mathrm{g} / \mathrm{cm}^{3}[/tex]
Object D:
Take object A 400 g object with a volume of 50 cubic centimetres:
We know that, [tex]m_{D}=400 \ \mathrm{g}[/tex] and [tex]V_{D}=50 \ \mathrm{cm}^{3}[/tex]
Density of object D is:
[tex]\Rightarrow \rho_{D}=\frac{m_{D}}{V_{D}}[/tex]
[tex]\Rightarrow \rho_{D}=\frac{400}{50}[/tex]
[tex]\therefore \rho_{D}=8 \ \mathrm{g} / \mathrm{cm}^{3}[/tex]
From the above calculation, on comparing,
[tex]C<B<A<D[/tex]