Answer : The volume of [tex]CO_2[/tex] gas is 1.00 L
Explanation :
First we have to determine the moles of [tex]C_3H_4PO_7^{3-}[/tex].
Molar mass of [tex]C_3H_4PO_7^{3-}[/tex] = 182.9 g/mole
[tex]\text{ Moles of }C_3H_4PO_7^{3-}=\frac{\text{ Mass of }C_3H_4PO_7^{3-}}{\text{ Molar mass of }C_3H_4PO_7^{3-}}=\frac{15.0g}{182.9g/mole}=0.0820moles[/tex]
Now we have to calculate the moles of [tex]CO_2[/tex].
The given balanced chemical reaction is:
[tex]C_5H_8P_2O_{11}^{4-}(aq)+H_2O(aq)+CO_2(g)\rightarrow 2C_3H_4PO_7^{3-}(aq)+2H^+(aq)[/tex]
From the reaction we conclude that,
As, 2 moles of [tex]C_3H_4PO_7^{3-}[/tex] produce from 1 mole of [tex]CO_2[/tex]
So, 0.0820 moles of [tex]C_3H_4PO_7^{3-}[/tex] produce from [tex]\frac{0.0820}{2}=0.041moles[/tex] of [tex]CO_2[/tex]
Now we have to calculate the volume of [tex]CO_2[/tex] gas.
Using ideal gas equation:
[tex]PV=nRT[/tex]
where,
P = pressure of gas = 1.00 atm
V = volume of gas = ?
T = temperature of gas = 298 K
n = number of moles of gas = 0.041 mole
R = gas constant = 0.0821 L.atm/mole.K
Now put all the given values in the ideal gas equation, we get:
[tex](1.00atm)\times V=(0.041mole)\times (0.0821L.atmK^{-1}mol^{-1})\times (298K)[/tex]
[tex]V=1.00L[/tex]
Therefore, the volume of [tex]CO_2[/tex] gas is 1.00 L