Not only due trees "fix" carbon but so do green vegetables. Photosynthesis in spinach leaves produces glucose via the Calvin cycle which involves the fixation of CO2 with ribulose 1-5 bisphosphate to form 3-phosphoglycerate via C3H8P2011(aq) + H2O(aq) + CO2(g) → 2 CzH4PO3(aq) + 2 H+(aq) If 15.0 g of 3-phosphoglycerate is formed by this reaction at T = 298 K and P = 1.00 atm what volume of CO2 is fixed? [1.00 L]

Respuesta :

Answer : The volume of [tex]CO_2[/tex] gas is 1.00 L

Explanation :

First we have to determine the moles of [tex]C_3H_4PO_7^{3-}[/tex].

Molar mass of [tex]C_3H_4PO_7^{3-}[/tex] = 182.9 g/mole

[tex]\text{ Moles of }C_3H_4PO_7^{3-}=\frac{\text{ Mass of }C_3H_4PO_7^{3-}}{\text{ Molar mass of }C_3H_4PO_7^{3-}}=\frac{15.0g}{182.9g/mole}=0.0820moles[/tex]

Now we have to calculate the moles of [tex]CO_2[/tex].

The given balanced chemical reaction is:

[tex]C_5H_8P_2O_{11}^{4-}(aq)+H_2O(aq)+CO_2(g)\rightarrow 2C_3H_4PO_7^{3-}(aq)+2H^+(aq)[/tex]

From the reaction we conclude that,

As, 2 moles of [tex]C_3H_4PO_7^{3-}[/tex] produce from 1 mole of [tex]CO_2[/tex]

So, 0.0820 moles of [tex]C_3H_4PO_7^{3-}[/tex] produce from [tex]\frac{0.0820}{2}=0.041moles[/tex] of [tex]CO_2[/tex]

Now we have to calculate the volume of [tex]CO_2[/tex] gas.

Using ideal gas equation:

[tex]PV=nRT[/tex]

where,

P = pressure of gas = 1.00 atm

V = volume of gas = ?

T = temperature of gas = 298 K

n = number of moles of gas = 0.041 mole

R = gas constant = 0.0821 L.atm/mole.K

Now put all the given values in the ideal gas equation, we get:

[tex](1.00atm)\times V=(0.041mole)\times (0.0821L.atmK^{-1}mol^{-1})\times (298K)[/tex]

[tex]V=1.00L[/tex]

Therefore, the volume of [tex]CO_2[/tex] gas is 1.00 L