Respuesta :

Answer:

[tex]\left[\begin{array}{ccc}5&7\\5&-8\\3&-9\end{array}\right] \left[\begin{array}{ccc}c\\d\end{array}\right] =\left[\begin{array}{ccc}-16\\3\\-15\end{array}\right][/tex]

This tells us that:

[tex]A=\left[\begin{array}{ccc}5&7\\5&-8\\3&-9\end{array}\right][/tex]

[tex]b=\left[\begin{array}{ccc}-16\\3\\-15\end{array}\right][/tex]

Step-by-step explanation:

So we are saying we have scalars, c and d, such that:

[tex]c\left[\begin{array}{ccc}5\\5\\ 3\end{array}\right]+d\left[\begin{array}{ccc}7\\-8\\-9\end{array}\right]=\left[\begin{array}{ccc}-16\\3\\-15\end{array}\right][/tex].

So we want to find a way to express this as:

Ax=b where x is the scalar vector, [tex]\left[\begin{array}{ccc}c\\d\end{array}\right][/tex].

So we can write this as:

[tex]\left[\begin{array}{ccc}5&7\\5&-8\\3&-9\end{array}\right] \left[\begin{array}{ccc}c\\d\end{array}\right] =\left[\begin{array}{ccc}-16\\3\\-15\end{array}\right][/tex]