Respuesta :

Answer:

[tex]V=\dfrac{2}{9\ \mu}R^2g(\rho_d-\rho_f)[/tex]

Explanation:

Given that

Radius =R

[tex]Density\ of\ droplet=\rho_d[/tex]

[tex]Density\ of\ fluid=\rho_f[/tex]

When drop let will move downward then so

[tex]F_{net}=F_{weight}-F_{b}-F_d[/tex]

Fb = Bouncy force

Fd = Drag force

We know that

[tex]F_b=\dfrac{4\pi }{3}R^3\ \times \rho_f\times g[/tex]

[tex]F_{weight}=\dfrac{4\pi }{3}R^3\ \times \rho_d\times g[/tex]

[tex]F_{d}=6\pi \mu\ R\ V[/tex]

μ=Dynamic viscosity of fluid

V= Terminal velocity

So at the equilibrium condition

[tex]F_{net}=F_{weight}-F_{b}-F_d[/tex]

[tex]0=F_{weight}-F_{b}-F_d[/tex]

[tex]F_{weight}=F_{b}+F_d[/tex]

[tex]\dfrac{4\pi }{3}R^3\ \times \rho_d\times g=\dfrac{4\pi }{3}R^3\ \times \rho_f\times g+6\pi \mu\ R\ V[/tex]

So

[tex]V=\dfrac{2}{9\ \mu}R^2g(\rho_d-\rho_f)[/tex]

This is the terminal velocity of droplet.