Titanium has an HCP unit cell for which the ratio of the lattice parameters cais 1.58. If the radius of the Be atom is 0.1445 nm, (a) determine the unit cell volume, and (b) calculate the theoretical density of Ti, given that its atomic weight is 47.87 g/mol

Respuesta :

Answer :

(a) The volume of unit cell is, [tex]9.91\times 10^{-23}cm^3/\text{ unit cell}[/tex]

(b) The theoretical density of Ti is, [tex]4.81g/cm^3[/tex]

Explanation :

(a) First we have to calculate the volume of the unit cell.

Formula used :

[tex]V=6r^2c\sqrt {3}[/tex]

where,

V = volume of unit cell  = ?

r = atomic radius = [tex]0.1445nm=1.445\times 10^{-8}cm[/tex]

conversion used : [tex](1nm=10^{-7}cm)[/tex]

Ratio of lattice parameter = c : a = 1.58 : 1

So, c = 1.58 a

And,  a = 2r

c = 1.58 × 2r

Now put all the given values in this formula, we get:

[tex]V=6\times r^2\times (1.58\times 2r)\sqrt {3}[/tex]

[tex]V=6\times r^3\times (1.58\times 2)\sqrt {3}[/tex]

[tex]V=6\times (1.445\times 10^{-8}cm)^3\times (1.58\times 2)\sqrt {3}[/tex]

[tex]V=9.91\times 10^{-23}cm^3/\text{ unit cell}[/tex]

The volume of unit cell is, [tex]9.91\times 10^{-23}cm^3/\text{ unit cell}[/tex]

(b) Now we have to calculate the density of Ti.

Formula used for density :

[tex]\rho=\frac{Z\times M}{N_{A}\times a^{3}}[/tex]

[tex]\rho=\frac{Z\times M}{N_{A}\times V}[/tex]     ..........(1)

where,

[tex]\rho[/tex] = density  of Ti = ?

Z = number of atom in unit cell  = 6 atoms/unit cell (for HCP)

M = atomic mass  = 47.87 g/mol

[tex](N_{A})[/tex] = Avogadro's number  = [tex]6.022\times 10^{23}atoms/mole[/tex]

[tex]a^3=V[/tex] = volume of unit cell  = [tex]9.91\times 10^{-23}cm^3/\text{ unit cell}[/tex]

Now put all the values in above formula (1), we get:

[tex]\rho=\frac{6\times 47.87}{(6.022\times 10^{23})\times (9.91\times 10^{-23})}[/tex]

[tex]\rho=4.81g/cm^3[/tex]

The theoretical density of Ti is, [tex]4.81g/cm^3[/tex]