Two fluid layers with different viscosities ( u1= 0.1 Pa ∙ s and u2 = 0.2 Pa ∙ s) are sandwiched between two plates of area A = 1 m2. Each layer is h = 1 mm thick. Find the force F necessary to make the upper plate move at a speed U = 1 m/s. Also, find the fluid velocity at the interface between the two fluids.

Respuesta :

Explanation:

The given data is as follows.

           [tex]\mu_{1}[/tex] = 0.1 Pa.s,             [tex]\mu_{2}[/tex] = 0.2 Pa.s

           [tex]h_{1}[/tex] = [tex]h_{2}[/tex] = 1 mm = [tex]1 \times 10^{-3} m[/tex]   (as 1 m = 1000 mm)

As the velocity gradients are linear so, the shear stress will be the same throughout.

                  [tex]\nu_{i}[/tex] = velocity at the interface

                [tex]\tau = \mu_{1} \frac{d\mu_{1}}{dy_{1}} = \mu_{2} \frac{d\mu_{2}}{dy_{2}}[/tex]

                [tex]\mu_{1} \times \frac{\nu_{i}}{h_{1}} = \mu_{2} \times \frac{\nu - \nu_{i}}{h_{2}}[/tex]

or,            [tex]\nu_{i} = \frac{\nu}{1 + \frac{\mu_{1}h_{2}}{\mu_{2}h_{1}}}[/tex]    

Now, putting the given values into the above formula as follows.

              [tex]\nu_{i} = \frac{\nu}{1 + \frac{\mu_{1}h_{2}}{\mu_{2}h_{1}}}[/tex]    

                          = [tex]\frac{1 m/s}{1 + \frac{0.1 \times 1}{0.2 \times 1}}[/tex]        

                          = 0.667 m/s

Hence, force required will be F = [tex]\tau \times Area[/tex]          

or,                  F = [tex]\mu_{1} \times \frac{\nu_{i}}{h_{1}} \times Area[/tex]

                         = [tex]0.1 \times \frac{0.667}{0.001} \times 1[/tex]

                         = 66.67 N

Thus, we can conclude that the fluid velocity is 0.667 m/s and force necessary to make the upper plate move at a speed U = 1 m/s is 66.67 N.