Answer:
The maximum temperature is 90.06° C
Explanation:
Given that
t= 0.1 mm
Heat generation
[tex]q_g=0.3\ MW/m^3[/tex]
Heat transfer coefficient
[tex]h=500\ W/m^2K[/tex]
Here one side(left side) of the wall is insulated so the all heat will goes in to right side .
The maximum temperature will at the left side.
Lets take maximum temperature is T
Total heat flux ,q
[tex]q=q_g\times t[/tex]
[tex]q=0.3\times 1000000\times 0.1 \times 10^{-3}\ W/m^2[/tex]
[tex]q=30\ W/m^2[/tex]
So the total thermal resistance per unit area
[tex]R=\dfrac{t}{K}+\dfrac{1}{h}[/tex]
[tex]R=\dfrac{0.1\times 10^{-3}}{25}+\dfrac{1}{500}[/tex]
R=0.002 K/W
We know that
q=ΔT/R
30=(T-90)/0.002
T=90.06° C
The maximum temperature is 90.06° C