the graph of the function h(x) is shown. find the function values h(5), h(7), and h(8)

Answer:
- 2, 2, 1
Step-by-step explanation:
h(5) means what is the value of y = h(x) when x = 5
The given point indicate the point where x = 5, that is y = - 2
Similarly
h(7) is the point y = h(x) when x = 7
The given point where x = 7 is y = 2
and h(8) is the point y = h(x) when x = 8
The given point where x = 8 is y = 1
Function given in the graph is the graph of a quadratic function.
Let the equation of the graphed function is,
[tex]y=a(x-h)^2+k[/tex]
Here, [tex](h,k)[/tex] is the vertex of the parabola.
From the graph attached,
Vertex of the parabola is (7, 2).
Therefore, equation of the function will be,
[tex]y=a(x-7)^2+2[/tex]
Since, (6, 1) is a point lying on the parabola
[tex]1=a(6-7)^2+2[/tex]
[tex]1=a(-1)^2+2[/tex]
[tex]1=a+2[/tex]
[tex]a=-1[/tex]
Therefore, equation of the function graphed will be,
[tex]y=-(x-7)^2+2[/tex]
And the function will be,
[tex]h(x)=-(x-7)^2+2[/tex]
For [tex]x=5,[/tex]
[tex]h(5)=-(5-7)^2+2[/tex]
[tex]h(5)=-4+2[/tex]
[tex]h(5)=-2[/tex]
For [tex]x=7[/tex],
[tex]h(7)=-(7-7)^2+2[/tex]
[tex]h(7)=2[/tex]
For [tex]x=8,[/tex]
[tex]h(8)=-(8-7)^2+2[/tex]
[tex]h(8)=-1+2[/tex]
[tex]h(8)=1[/tex]
Learn more,
https://brainly.com/question/23569423