Respuesta :
remember
(x^m)(x^n)=x^(m+n)
and commutaitve property
(3.4 times 10^-14) times (1.8 times 10^28)=
(3.4)(10^-14)(1.8)(10^28)=
(3.4)(1.8)(10^-14)(10^28)=
(6.12)(10^(-14+28))=
(6.12)(10^14)
answer is first option
(x^m)(x^n)=x^(m+n)
and commutaitve property
(3.4 times 10^-14) times (1.8 times 10^28)=
(3.4)(10^-14)(1.8)(10^28)=
(3.4)(1.8)(10^-14)(10^28)=
(6.12)(10^(-14+28))=
(6.12)(10^14)
answer is first option
Answer:
[tex]6.12*10^{14}[/tex]
Step-by-step explanation:
we know that
[tex](a*10^{m})*(b*10^{n})=(a*b)*10^{m+n}[/tex]
In this problem we have
[tex]a*10^{m}=3.4*10^{-14}[/tex]
[tex]b*10^{n}=1.8*10^{28}[/tex]
therefore
[tex]3.4*10^{-14} *1.8*10^{28}=(3.4*1.8)*10^{-14+28}=6.12*10^{14}[/tex]