Respuesta :

Answer:

So in standard form equation will be [tex]x^2+2x-1[/tex]

Step-by-step explanation:

We have given expression [tex]\frac{x^2-5x+6}{x-3}+\frac{x^3-1}{x-1}[/tex]

Let first we solve first part of the expression

So [tex]\frac{x^2-5x+6}{x-3}=\frac{x^2-3x-2x+6}{x-3}=\frac{(x-3)(x-2)}{x-3}=x-2[/tex]

Now second part [tex]\frac{x^3-1}{x-1}[/tex]

We know the algebraic identity [tex]a^3-b^3=(a-b)(a^2+ab+b^2)[/tex]

So by using this identity

[tex]\frac{x^3-1}{x-1}=\frac{(x-1)(x^2+x+1)}{x-1}=x^2+x+1[/tex]

Now adding first and second part

[tex]x-2+x^2+x+1=x^2+2x-1[/tex]

So in standard form equation will be [tex]x^2+2x-1[/tex]