Respuesta :

Answer:

at x = [tex]\sqrt{2}[/tex],  [tex]-3x^{2} + \sqrt{2}x + \frac{1}{2}[/tex] = -3.5

Step-by-step explanation:

The given equation is [tex]-3x^{2} + \sqrt{2}x + \frac{1}{2}[/tex]

Now, substitute the value of x = [tex]\sqrt{2}[/tex] in the above equation.

The given equation simplifies to,

[tex]-3(\sqrt{2})^{2} + (\sqrt{2})(\sqrt{2}) + \frac{1}{2}[/tex]

now, [tex]\sqrt{2} . \sqrt{2}  = 2, \textrm{and} (\sqrt{2} )^{2} = 2[/tex]

So, the equation become

-3(2) + 2 + (1/2) = [tex]-6 + 2 + \frac{1}{2}   = -4 + \frac{1}{2} = \frac{-8 + 1}{2}  = \frac{-7}{2}[/tex]  

= -3.5

So, at x = [tex]\sqrt{2}[/tex],  [tex]-3x^{2} + \sqrt{2}x + \frac{1}{2}[/tex] = -3.5