Which of these statements are true for all a, b > 0? Explain your conjecture. (i). 2(a + b) = 2a + 2b (ii) a+b/2= a/2+b/2 (iii) √a+b= √a+√b

Respuesta :

Answer:

Statement (i) , (ii) are TRUE  and

The statement (iii) is FALSE.

Step-by-step explanation:

Given :  a , b are strictly greater than  0.

Now, let us take each statements.

(i) 2(a +b) =  2a + 2b

Yes, the given statement is TRUE, as by DISTRIBUTIVE PROPERTY we get that x (y + z) = xy + xz

(ii)[tex]\frac{a + b}{2}  = \frac{a}{2}  +   \frac{b}{2}[/tex]

Yes, the given statement is TRUE, as by DISTRIBUTIVE PROPERTY we get that [tex]\frac{m + n}{k}  = \frac{m}{k}  +   \frac{n}{k}[/tex]

(iii[tex]\sqrt{(a +b)}  = \sqrt{a}  + \sqrt{b}[/tex]

Here, the given statement is FALSE.

Because, if we have a = 2 and b = 3, then

[tex]\sqrt{(2+ 3} ) = \sqrt{5}  =  2.23\\\sqrt{2}  + \sqrt{3}  = 1.41 +  1.73 =  3.14\\[/tex]

and 2.23 ≠ 3.24

So,[tex]\sqrt{(a +b)}  \neq \sqrt{a}  + \sqrt{b}[/tex]