Respuesta :

Answer:

D.

Step-by-step explanation:

f(x) is multiplication

g(x) is division

Therefore these are opposite functions

have a nice day and mark me brainliest! :)

Answer:

A. [tex]f(x)=\frac{12}{x}-18[/tex] and [tex]g(x) = \frac{12}{x+18}[/tex]

Step-by-step explanation:

For find the inverse of a funtion we have to solve for x in the equation:

[tex]f(x)=\frac{12}{x}-18[/tex]

First, replace f(x) to y and solve for x as:

[tex]y=\frac{12}{x}-18[/tex]

[tex]y+18=\frac{12}{x}[/tex]

[tex]x(y+18)= 12[/tex]

[tex]x = \frac{12}{y+18}[/tex]

and finally we interchange y and x as:

[tex]y = \frac{12}{x+18}[/tex]

and replace y by g(x):

[tex]g(x) = \frac{12}{x+18}[/tex]

So, the inverse of the function [tex]f(x)=\frac{12}{x}-18[/tex] is [tex]g(x) = \frac{12}{x+18}[/tex]