Respuesta :

Answer:

The solutions are [tex]x=-3,\:x=3[/tex]

Step-by-step explanation:

To factor this cubic polynomial [tex]x^3+3x^2-9x-27[/tex] you must:

  • Group the polynomial into two sections

[tex]x^3+3x^2-9x-27=\left(x^3+3x^2\right)+\left(-9x-27\right)[/tex]

  • Factor out -9 from [tex](-9x-27)[/tex]

[tex](-9x-27)=-9\left(x+3\right)[/tex]

  • Factor out [tex]x^2[/tex] from [tex](x^3+3x^2)[/tex]

[tex](x^3+3x^2)=x^2\left(x+3\right)[/tex]

[tex]x^3+3x^2-9x-27=-9\left(x+3\right)+x^2\left(x+3\right)[/tex]

  • Factor out common term [tex]x+3[/tex]

[tex]-9\left(x+3\right)+x^2\left(x+3\right)=\left(x+3\right)\left(x^2-9\right)[/tex]

[tex]x^3+3x^2-9x-27=\left(x+3\right)\left(x^2-9\right)[/tex]

  • Factor [tex]x^2-9[/tex]

[tex]x^2-9=\left(x+3\right)\left(x-3\right)[/tex]

[tex]x^3+3x^2-9x-27= \left(x+3\right)\left(x+3\right)\left(x-3\right)[/tex]

[tex]x^3+3x^2-9x-27=\left(x+3\right)^2\left(x-3\right)=0[/tex]

  • Using the Zero Factor Theorem: = 0 if and only if = 0 or = 0

[tex]x+3=0, \quad{x=-3}\\x-3=0, \quad{x=3}[/tex]

The solutions are

[tex]x=-3,\:x=3[/tex]