Respuesta :
Answer:
1728
Step-by-step explanation:
We can write the expression as:
[tex]144^{3/2}[/tex] = [tex]12^{2X(3/2)}[/tex]
So,
[tex]12^{2X(3/2)}[/tex] = [tex]12^{3}[/tex].
Which is 1728.
Answer:
[tex]144^{\frac{3}{2} }=1,728[/tex]
Step-by-step explanation:
The given expression is
[tex]144^{\frac{3}{2} }[/tex]
We know that every fractional power can be transformed into a root if we use the following property
[tex]x^{\frac{a}{b} } =\sqrt[b]{x^{a} }[/tex]
Where [tex]x=144[/tex], [tex]a=3[/tex] and [tex]b=2[/tex], replacing this values we have
[tex]144^{\frac{3}{2} }=\sqrt{144^{3} } =(\sqrt{144} )^{3} =12^{3}= 1,728[/tex]
Therefore, the given power is equivalent to 1,728.
Remember that you need to use the right properties to simplify an algebraic expression. In this case we had a power with a fractional exponent, so we applied the property about it.