Respuesta :

To prove: [tex]\cot x+\tan x=\sec x\csc x[/tex]

where [tex]x\neq \dfrac{\pi}{2}(2n-1)[/tex]

Using trigonometry formula:

[tex]\cot x=\dfrac{\cos x}{\sin x}[/tex]

[tex]\tan x=\dfrac{\sin x}{\cos x}[/tex]

[tex]\sec x=\dfrac{1}{\cos x}[/tex]

[tex]\csc x=\dfrac{1}{\sin x}[/tex]

Taking Left hand side

[tex]\Rightarrow \dfrac{\cos x}{\sin x}+\dfrac{\sin x}{\cos x}[/tex]

[tex]\Rightarrow \dfrac{\cos^2 x+\sin^2x}{\sin x\cos x}[/tex]

[tex]\Rightarrow \dfrac{1}{\sin x\cos x}[/tex]         [tex]\because \cos^2 x+\sin^2x=1[/tex]

[tex]\Rightarrow \sec x\csc x[/tex]  

Hence proved