Respuesta :

Answer:

[tex]\frac{(x^2y)^2(xy)^3z^2)}{((xy^2)^2yz)}[/tex] = x⁵z

Step-by-step explanation:

Expression given in the question:

[tex]\frac{(x^2y)^2(xy)^3z^2)}{((xy^2)^2yz)}[/tex]

now,

when the power is applied to the number with power, the power of the number gets multiplied i.e

(Xᵃ)ᵇ = Xᵃᵇ

The number having same base when multiplied together, the powers of the numbers gets added

Xᵃ × Xᵇ = Xᵃ⁺ᵇ

and,

The number having same base are when divided , the powers of the numbers gets subtracted

[tex]\frac{X^a}{X^b}[/tex] = Xᵃ⁻ᵇ

thus using the above property, we get

⇒ [tex]\frac{(x^{2}\times2}y^2)(x^3y^3)z^2)}{((x^2y^{2\times2})yz)}[/tex]

or

⇒ [tex]\frac{(x^{4}y^2)(x^3y^3)z^2)}{((x^2y^{4})yz)}[/tex]

or

⇒  [tex]\frac{(x^{4}x^3y^2y^3)z^2)}{(x^2y^{4}yz)}[/tex]

or

⇒  [tex]\frac{(x^{4+3}y^{2+3})z^2)}{(x^2y^{4+1}z)}[/tex]

or

⇒  [tex]\frac{(x^{7}y^{5})z^2)}{(x^2y^{5}z)}[/tex]

or

⇒  [tex](x^{7-2}y^{5-5})z^{2-1})[/tex]

or

⇒  [tex](x^{5}y^{0})z^{1})[/tex]

or

⇒ x⁵z