Respuesta :
d1,..,d9 = 0,0,2,2,2,3,4,6,8 //there are 9 values, in ascending order
Q2 (median) = d5 = 2 //value in the middle
Q1 = (d2+d3) / 2 = (0+2)/2 = 1
(Q1 is middle value of d1,d2,d3,d4, but there is no middle element among four elements, that is why arithmetic mean is taken)
Q3 = (d7+d8) / 2 = (4+6)/2 = 5
interquantlie range = IQR = Q3 - Q1 = 5 -1 = 4
answer: 4
Q2 (median) = d5 = 2 //value in the middle
Q1 = (d2+d3) / 2 = (0+2)/2 = 1
(Q1 is middle value of d1,d2,d3,d4, but there is no middle element among four elements, that is why arithmetic mean is taken)
Q3 = (d7+d8) / 2 = (4+6)/2 = 5
interquantlie range = IQR = Q3 - Q1 = 5 -1 = 4
answer: 4
Answer:
Option C.
Step-by-step explanation:
The given data set is
0, 2, 4, 0, 2, 3, 2, 8, 6
Arrange the data in ascending order.
0, 0, 2, 2, 2, 3, 4, 6, 8
Divide the data set in 4 equal parts.
(0, 0), (2, 2), 2,( 3, 4), (6, 8)
Now, we get
[tex]Q_1=\dfrac{0+2}{2}=1[/tex]
[tex]Q_2=Median=2[/tex]
[tex]Q_3=\dfrac{4+6}{2}=5[/tex]
The interquartile range formula:
[tex]IQR=Q_3-Q_1[/tex]
[tex]IQR=5-1[/tex]
[tex]IQR=4[/tex]
The interquartile range of the data is 4. Therefore, option C is correct.