Respuesta :

Answer:

[tex]x=\frac{log(2)}{log(10)}[/tex]

Step-by-step explanation:

Let:

[tex]y=10^{x}[/tex]

So, rewritting the equation:

[tex]y^{2} -3y+2=0[/tex]

Factoring:

[tex](y-2)(y-1)=0[/tex]

Therefore:

[tex]y=2\hspace{5}or\hspace{5}y=1[/tex]

Substitute back for [tex]y=10^{x}[/tex]

for y=2

Taking the logarithm base 10 of both sides:

[tex]x=\frac{log(2)}{log(10)}[/tex]

for y=1

Taking the logarithm base 10 of both sides and adding 1 to both sides:

[tex]log(1)+x=\frac{log(2)}{log(10)}[/tex]

[tex]log(1)=0[/tex]

so:

[tex]x=\frac{log(2)}{log(10)}[/tex]

Hence:

[tex]x=\frac{log(2)}{log(10)}[/tex]