Respuesta :

Answer:

(8,3)

Step-by-step explanation:

Answer:

Option 4 - (8,3)

Step-by-step explanation:

Given : The system of equations,

[tex]5r+7s=61[/tex]  ......(1)

and [tex]-5r+7s=-19[/tex]......(2)

To find : Which ordered pair (r, s) is the solution to the given system of equations?

Solution :

To get the solution we solve both the equations,

Add equation (1) and (2),

[tex]5r+7s+(-5r+7s)=61+(-19)[/tex]

[tex]5r+7s-5r+7s=61-19[/tex]

[tex]14s=42[/tex]

[tex]s=\frac{42}{14}[/tex]

[tex]s=3[/tex]

Substitute the value of s in equation (1),

[tex]5r+7(3)=61[/tex]

[tex]5r+21=61[/tex]

[tex]5r=61-21[/tex]

[tex]5r=40[/tex]

[tex]r=8[/tex]

The value of r=8 and s=3.

So, ordered pair  (8,3) is the solution to the given system of equations.

Therefore, option 4 is correct.