Respuesta :

Answer:

[tex]-\frac{1}{\log(x)} [/tex]

Step-by-step explanation:

Data provided:

logₓ (1/10)

Now,

From the properties of log function

[tex]\log\frac{A}{B}[/tex] = log(A) - log(B)

logₓ (z)= [tex]\frac{\log(z)}{\log(x)}[/tex]  (where the base of the log is equal for both numerator and the denominator)

also,

log(xⁿ) = n × log(x)

Therefore,

logₓ (1/10) = logₓ(1) - logₓ(10)

=  [tex]\frac{\log(1)}{\log(x)} - \frac{\log(10)}{\log(x)}[/tex]  (here log = log₁₀)

=  [tex]\frac{0}{\log(x)} - \frac{\log(10)}{\log(x)}[/tex] (as log(1) = 0)

=   [tex]-\frac{\log(10)}{\log(x)}[/tex]

=  [tex]-\frac{1}{\log(x)}[/tex]     (as log(10) = 1)

Therefore,

the given equation can be rewritten as  [tex]-\frac{1}{\log(x)}[/tex]