Respuesta :
Answer:x=6.403
Step-by-step explanation:
Given
[tex]63^x=36^{x+1}[/tex]
taking natural log both side
[tex]\ln \left ( 63^x\right )=\ln \left ( 36\right )^{x+1}[/tex]
[tex]x\ln \left ( 63\right )=\left ( x+1\right )\ln \left ( 36\right )[/tex]
[tex]x\left ( \ln \left ( 63\right )-\ln \left ( 36\right )\right )=\ln \left ( 36\right )[/tex]
[tex]x=\frac{\ln \left ( 36\right )}{\ln \left ( 63\right )-\ln \left ( 36\right )}[/tex]
[tex]x=6.403[/tex]
Answer:
x = 6.404
Step-by-step explanation:
The given equation is:
63ˣ = 36⁽ˣ⁺¹⁾
Taking log on both side
x log(63) = (x + 1) log(36)
⇒ x log(63) = x log(36) + log(36)
⇒ x log(63) - x log(36) = log(36)
⇒ x {log(63) - log(36)} = log(36)
⇒ [tex]x = \frac{\log(36)}{\log(63) - \log(36)}[/tex]
⇒ [tex]x = \frac{1.556}{1.799 - 1.556}[/tex] {∵ log(36) = 1.556 and log(63) = 1.779}
⇒ x = 6.404