Answer:
The maximum electrical force is [tex]2.512\times10^{-2}\ N[/tex].
Explanation:
Given that,
Speed of cyclotron = 1200 km/s
Initially the two protons are having kinetic energy given by
[tex]\dfrac{1}{2}mv^2=\dfrac{1}{2}mv^2[/tex]
When they come to the closest distance the total kinetic energy is converts into potential energy given by
Using conservation of energy
[tex]mv^2=\dfrac{kq^2}{r}[/tex]
[tex]r=\dfrac{kq^2}{mv^2}[/tex]
Put the value into the formula
[tex]r=\dfrac{8.99\times10^{9}\times(1.6\times10^{-19})^2}{1.67\times10^{-27}\times(1200\times10^{3})^2}[/tex]
[tex]r=9.57\times10^{-14}\ m[/tex]
We need to calculate the maximum electrical force
Using formula of force
[tex]F=\dfrac{kq^2}{r^2}[/tex]
[tex]F=\dfrac{8.99\times10^{9}\times(1.6\times10^{-19})^2}{(9.57\times10^{-14})^2}[/tex]
[tex]F=2.512\times10^{-2}\ N[/tex]
Hence, The maximum electrical force is [tex]2.512\times10^{-2}\ N[/tex].