Answer:
no solution
Step-by-step explanation:
given equation
2 x - 4 y = -1...................(1)
3 x - 6 y = 4...................(2)
now using substitution method
substituting value of x from equation 2 in equation(1)
3 x - 6 y = 4
3 x = 4 + 6 y
[tex]x= \dfrac{4 + 6 y}{3}[/tex]
putting value in equation 1
[tex]2(\dfrac{4 + 6 y}{3}) - 4 y = -1[/tex]
by solving this term of y get cancel.
so,
when we look at the given equation
the condition of no solution
[tex]\dfrac{a_1}{a_2} = \dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2}[/tex]
[tex]\dfrac{2}{3} = \dfrac{-4}{-6} \neq \dfrac{-1}{4}[/tex]
hence, the condition of no solution follows
so, there will no solution to the given equation.