Answer:
The parametric equations for the tangent line are :
x = Cos(10) - t×Sin(10)
y = Sin(10) + t×Cos(10)
z = 20 + 2t
Step-by-step explanation:
When Z=20:
Z=2t=20 ⇒ t=10
The point of tangency is:
r(10)= Cos(10) i + Sin(10) j + 20 k
We have to find the derivative of r(t) to get the tangent line:
r'(t)= -Sin(t) i + Cos(t) j + 2 k
The direction vector at t=10 is:
r'(10)= -Sin(10) i + Cos(10) j + 2 k
So, the equation of the tangent line is given by:
x = cos 10 -t×Sin(10)
y = sin 10 + t×Cos(10)
z = 20 + 2t