57. Carmela’s annual salary in year n can be modeled by the recursive sequence Cn+1 = 1.05 Cn, where C0 = $75,000.
c. Find an explicit formula for a sequence that represents Carmela’s salary.

Respuesta :

Answer: [tex]C_n=75000(1.05)^n,\text{ for}n\geq0[/tex]

Step-by-step explanation:

Given : Carmela’s annual salary in year n can be modeled by the recursive sequence [tex]C_{n+1} = 1.05 C_n[/tex], where [tex]C_0[/tex] = $75,000.

It is a geometric sequence with common ratio r= 1.05

Explicit formula for geometric sequence:-

[tex]a_n=a_0r^n,\text{ for}n\geq0[/tex]

An explicit formula for a sequence that represents Carmela’s salary will be:

[tex]C_n=C_0(1.05)^n,\text{ for}n\geq0[/tex]

[tex]C_n=75000(1.05)^n,\text{ for}n\geq0[/tex]