83. Use properties of exponents to rewrite each expression with only positive, rational exponents. Then find the numerical value of each expression when x = 9, y= 8, and z= 16. In each case, the expression evaluates to a rational number.
b. 11√y2z4

Respuesta :

Answer:

[tex]2^{\frac{18}{11}}[/tex]

Step-by-step explanation:

The given expression is

[tex]\sqrt[11]{y^2z^4}[/tex]

The exponent property [tex]\sqrt[n]{x^ay^b}=x^{a/n}y^{b/n}[/tex]

Applying this exponent property, we have

[tex]\sqrt[11]{y^2z^4}\\\\=y^{2/11}z^{4/11}[/tex]

Now, the given numeric values are x = 9, y= 8, and z= 16

On substituting these values in the simplified expression, we get

[tex](2)^{2/11}(16)^{4/11}[/tex]

This can be further simplified by writing [tex]16=2^4[/tex]

[tex](2)^{2/11}(2^4)^{4/11}\\\\(2)^{2/11}(2)^{16/11}[/tex]

Now, applying the product rule of exponent: [tex]x^a\cdot x^b=x^{a+b}[/tex]

[tex](2)^{2/11+16/11}\\\\=2^{\frac{18}{11}}[/tex]