Respuesta :

Answer:

[tex]x=\frac{10^{x}-3}{2}[/tex]

Step-by-step explanation:

A logarithm is the inverse of an exponent, that is:

[tex]y=log_{b}(x)\\b^{y}=x[/tex]

Using this property we can solve x and get the inverse function:

[tex]f(x)=log(2x+3)\\\\y=log(2x+3)\\\\10^{y}=2x+3\\\\x=\frac{10^{y}-3}{2}\\\\y=\frac{10^{x}-3}{2}\\\\\\g(x)=f^{-1}(x)=\frac{10^{x}-3}{2}[/tex]

Otras preguntas