Respuesta :

Answer:

-5a+b

Step-by-step explanation:

A general quadratic function of x is given by f(x) = ax² +bx +c

Now, the rate of change of the quadratic function f(x) is given by [tex]\frac{df(x)}{dx}[/tex].

Therefore, [tex]\frac{df(x)}{dx}[/tex] = 2ax +b.

Now, the value of x ranges between -3 ≤ x ≤-2.

So, at x= -3, [tex]\frac{df(x)}{dx}[/tex] = 2a(-3) +b = -6a +b

And at x= -2, [tex]\frac{df(x)}{dx}[/tex] = 2a(-2) +b = -4a +b

Therefore, the average rate of change will be given by [tex]\frac{(-6a+b)+(-4a+b))}{2} =-5a+b[/tex]. (Answer)

Answer:

-4

Step-by-step explanation: