Respuesta :
Answer:
-5a+b
Step-by-step explanation:
A general quadratic function of x is given by f(x) = ax² +bx +c
Now, the rate of change of the quadratic function f(x) is given by [tex]\frac{df(x)}{dx}[/tex].
Therefore, [tex]\frac{df(x)}{dx}[/tex] = 2ax +b.
Now, the value of x ranges between -3 ≤ x ≤-2.
So, at x= -3, [tex]\frac{df(x)}{dx}[/tex] = 2a(-3) +b = -6a +b
And at x= -2, [tex]\frac{df(x)}{dx}[/tex] = 2a(-2) +b = -4a +b
Therefore, the average rate of change will be given by [tex]\frac{(-6a+b)+(-4a+b))}{2} =-5a+b[/tex]. (Answer)